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INELASTIC COLUMN BEHAVIOR 1

ByJOHN lZ.DUBEEtG and THOMASW. IVILOEE, III

SUMIIARY

ThF wigni~cant ~ndiflg.s of a theoretical dudy of cohunn
b~~urior in the pZa8fic stre88 range are presented. When the
b~harior ~f a ~traight column. i8 regarded a8 the limiting beharior
~!f an imperj%t column as the initial impvjiction (lack of
~tmightnewi) approache8 zero, the departure from the &fmight
clltlj-guration occur8 at the tungent-moduiu8 load. ~“ithout such.
a concept of the twharior of a 8traight column, one i8 led to the
unrealistic conclusion that lateral de$ection of the column can
begin at any load between th tangen&noduiu8 ralue and the
Euler load, baeed on the original ela#ic modulw.

The bthacior of a column with Lunishing initial lack of
.vhYJight)ie88at !oad$ beyonii the ta,ngent-modu!u load depends
wpnn the 8trew8train curre for the maten”a[. A family of
rurrw ~hou<ng load again8t lateral de$ection i8 pre8ented for
idt alized 11-wction cdum M qf rariaus lengths and of cam”aw
n~ateria18that hare a sy~tematic ruriatiw of th+ir 8tre88-8train
curw. T7me currm Rhaw that, for column8 in which the
mntwz”ai 8tres8-8train rurre8 depart gradually from the initial
t!uxt[c 8[opc Q8h characteridic of 8tuinie88 8teek, the mam”mu-m
co!urnn load.? may be irigni~ca ntly abore the tangent+noduh.i8
load. .If tb dqw-ture from the ela&c cu.rw ti more abrupt,
weh a8 for the hig~tren~h aluminum or magnetium a[loy~,
thtI maximum load i8 only .dightly abwe the tangent- modulu~
load,

INTRO DI!CTION

L-ntil recently, the doubkmodulus theory had generally
btwn accepted as the correct theory of column failure in the
inelastic range of stress. This theory, originally de~eloped
IJY Consid?re and Engesser and later extended by Von
IWnAn (see reference 1 for a discussion of this development),
predicts that the load at which bending starts and the maxi-
mum load that a pin-ended column can support are the same
tind can be obtained from the Euler equation

zFE1
P.=T

]Jy substitution of a reduced modulus for ~“oung’s modulus.
[The symbols used in this report are presented in appendix
.$.”) The reduced modulus is obtained by assuming that,
at the start of bending of an originally straight column, the
{Iirection of straining of the elements on the convex side of

the column reverses. When such reveraaI of strain occurs
in the plastic range, increments of stre= are related to
increments of strain by the origins.I elastic moduhs. The
part of the cross section over vihich the strati reverse is
detamined by the condition that there shall be no change in
load during the bending process.

In 1947, ShanIey (reference 2) was able to show for n-
simplified cohmm that, if the load is allowed to increase
during bending, bending of the column cam start at a Iower
load than the reduced+noduIus load. The load for which
he showed this to be true was the tangent-moduhs Ioad,
which can be obtained from the Euler equation by sulMitu-
tion of the tangent moduhs in pIace of Young’s moduIus.
Shanley drew conclusions concerning the behavior of columns
on the basis of the behavior of the simple model and certa”m
experimental observations.

In order to cIarify the behavior of columns in the plastic
range, a theoretical study was made with the following”
threefold purpose:

(1) To estabIish the Ioad at which a cohmm starts to
deflect, des-~ated the critical load in this report

(2) To study the mechanism of column action beyond the
critical load

(3) To establish the relation between the maximum coIumn
load and the stress-strain curve for the material

In order to make this study, two models were chosen: One
model, similar to Shanley’s, was a spring+ upported rigid
cohmm—that is, one that had a concentrated fle.tibilit y—
and the other, an idealized H+ection column that had its
fie.xibility distributed along its length and consisted of two
concentrated flanges separated by a web of negligible area
but of infinite shear rigidity.

The significant results of this study were presented without
proof at the Structures Session, Eghteant& Annual Meeting
of the Institute of the Aeronautical Sciences held January
23-26, 1950, in New York, and were subsequently published
by that organization as reference 3. The purpose of the
present report is to give the details of the analysis which were
not included in reference 3. Since the original presentation,
several other investigators have published the rewdts of their
researches on inelastic column action. (See references 4 to
6.) The results in these references are in substantial agree-
ment with those obtained in this report.

I SUpmdeSNACA TN !ZZ3Z%eiasttc Cohmn Bebatir”by JohnE. DnBerJmd TbomssW.Wider,III,lMI
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THE CRITICAL LOAD

In the elastic range of stress the. critical load for a straigb t
column-which must again be emphasized as having the
restricted meaning in this rwport as the load at Aich”bending
starts-is unique and is given by the well-known Euler
formula. The situation is not so simple in the inelastic range
of stress, however, and tlm source of the difficulty lies in the
character of the stress-strain relations in the plastic range.
In the inelastic range of stress, at least for uniaxisl states of
stress, inc.rernents in stress are related to increments in strain
by the tangent modulus of the material, but decreases in
stress are related to strtiin by the original elastic modulus.

In order to demonstrate the lacli of uniqueness in defining
a load at which bending starts in the inelast.ic range, tbu
simple spring-supported column shown in figure 1 was
analyzed. Details of the analysis are presented in appcnclix
B. The inverted tee is rigid and free to’rotate and translate
vertically about. the intersectim of the cross of the tee. ‘l’he.
column is supported at each .cnd of tho horizontal leg by
identieal sets of two elastic springs. One spring is fixed at
the far end; the other spring has a ratchet attached to its far
end which permits no additional strain in the spring when the
displacement of the end of the horizontal member exceeds

$

Force

. .

4

7’
Dispbcemed

FIaurts1.-sprhg~pported oiumn model md fixm-dkpkement dlsgmm for aMI nprlng
8ystam.

el. If the eml of the horizontal member moves upward after
exceeding el, the ratchet immediately catches. The
combined forccdisplacement reIation of each spring
system is showu in figure 1. This relation may be rcgardrd
as a si@pIo stress-strain curve that includes a plastic region
and the phenomwm of strain reversal. If such a column is
assumed_ perfcctly straight tind its load is frco to chnngo
during bending, an infinity of loada can be found at which tlw
top of this column can start to assume a deflected position.
This range of loads is included between th tangent-modulus
load f~r this column and LINJEuler load. Those loads bc-
twce.n the ttmgenhmodulua load and the reduced-modulus
load require an increase in load during initial bonding; wlwro-
as, those loads botwwm the reduced-modulus load and ttlm
Euler logd require a decrease in loacl during the bending
process.

The actions of tho spring systems at thestart of Ixmlingcrtn
bc dcscrilwd by locating the instantaneous center of rota~ion
of the @id column. AL the tangent-modulus load, the ccn-
tcr is at the end of the horizonttd leg on tho side that is not
Ioading; therefore, no displacement of that spring systcm
occurs. For loads bctwccn tho tangent-modulus load and
the Euler load, t.hc center Iics on the horizontal leg bcf,wmi
the twmcnds. At the Euler load, tho instantaneous ccutcr
is at the opposite side and no displacement of thaL spring
system o~w. Itisevident, then, thaL reversal of Lhcspring
system on onc siclc always occurs for tlmsc loads cwcept at the
tangen~modulus load when there is no change in the dis-
placement of that sick.

h analysis made for the idealized H-section (appendix
C) reveals a similar but somewhat more complex behavior of
a pmfcctly straight column— that is, the same range of loads
e.xiats at which a perfectly straight plastic column con start
to assume a deflected shapr. (See fig, 2.) Those lords
betwcenlho tangen~rnodulus load and the reduced-modulus
load arc associated with an incream in load during ini[.id
deflection; whereas, those loads bctweon the reduced-modulus
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(8) Initkd dopes of lcaddefleetlon wrws. (b) IuIUSI strew and Skdll ChWl@SSt
03nf.e.rcrossS-sCtlon.

FIGURE2.—@olumnbebarkw at edtkd kds,
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load and t-he Euler load arc associated with a decrease in
load. The essential difference in the column actions for this
range of loads is the pattern of strain reversal which occurs
during bending. At the tangent-modulus load, none of the
strains over the entire volume of the column reverse at the
start of bending; however, the strain is just stationary at the
cunter of the column on the convex side. At- the reduced-
moduha load, the reversal is complete over one side of the
column as usua~y presented in the double-modulus theory
and the strains are stationary along the surface that separates
the reversed and unreversed regions. At the Euler load, all
the strains reverse over the entire volume of the column
~xcept for the center of the column on the concave side, and
there the strain is stationary. Because the distribution of
stiffness over the length of the ccdumn is the same at these
three loads, the instautmwous detlected shtipe is a half sine
wave.

Since the deflected shape of the column at the tangent-
modulus and Euler loads is known and since the instan-
taneous center for strain of the center cross section of the
volumn is on the convex side at the tangent-moduIus load
and on the compression side at the Euler load, the initial
slope of the curve of load against center deflection can be
voluputed for the columns. The slopes obtained here are
valid for columns of constant synunetrict-d cross section.
it. the tangtmt-morluhls load,

dPb P
- “—==! 1’dye 2p

and. at the Euler load,

Lp=–&, P.
(i 7JC

where b is the distance between the extreme fibers in bending
aud p is the radius of gyration of the cross section. At the
rtvluced-rnodulus load, this sIope is zero.

Th{’ analysis of a perfectly straight plastic column leads to
H range of critical loads, but only the smallest, the tangent-
IIMMJUIUS load, can be accepted as being si@cant for real
mlumns. So real column is perfectly straight; therefore,
it is reasonable to define the significant. criticaI load as one
I)Used on t-he behavior of a slightly bent column as the initial
lavk of straightness vanishes. In order to demonstrate
th[’ results of such a point of tiew for defining the critical
load. a more complete analysis of the spring-supported
rolumn was made in which a small intitial deflection dO
of the top of the column w-as included. In making such an
unalysis, it is necessary to keep track of the displacements
of the individual spring systems to be certain that. the correct
force-displacement relations are being used. The possible
mmbinat ions for the spring systii are show-n in figure 3.

The rw.dts of the analysis of the cohunn with various
tunounts of initial deflection are shown in figure 4. Also
shown are the limits of th@ regions in which the various
force-deflect ion relations exist. The mos~ significant point
to he observed is that. as the initial imperfection decreases,

o Left sprinq sys fern
❑ fl+f sprirq .sysf em

FK F

(al
e e

‘K kc-
e e

(s) Ekstlc. (b)l!htbphetk.
(c) Pleetlc. (d) Pktlc with ehstlc unhdfns.

FIGr-ztE3.—Fourform.dlsphcernent mmblrmtkme hr the eprhg ey%emls.

the tangent-moclulus load is the Iimit ing load at which there
is a sust~ined increase in the bending deflection of the
column. It should also be noted that the reversal of the
spring deflection always occurs below the tangent-modulus .
load and occurs just at. thut load as the initial imperfection
vankhes.

‘ THE 31.4XIMUM LOAD

The Ioaddetlection curves for the simple column, given
in figure 4, are all approaching the reduced-modulus load
at large deflection. This is a consequence of the Hnearity
of the spring systems and is to he e.spected if one considers
the deflected column with reversal as a new eIastic column,
the stiffness of which is measured hy the reduced modulus.
This behvior is not. t~-pical of the actions of real columns
because, as the load on the column increases, the strains
increase and there is a continual reduction of the tangent
modulus. How rapidly the tangent modulus decreases
depends on the shape of the stress-strain curve; therefore,
the maximum strength of a column of a given geometry is
expected to depend on the stress+ train curve of its material.

To study the effect of the shape of the stress-strain
curve on the maximum strength of a column, an analysis
was made of the behavior of the E+ection column after it
had become critical and started to bend at the tangent-
modulus load. The analytical stress-strain curve for the
material of this column was assumed to be of the form sug-
gested by Ramberg and Osgood (reference 7). This form
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is summarized in figure 5. The stress al is usually close
to the yield stress of the material. The mosL significant.
pma.meter for this stucly is Lhe exponent n. law values of
n corrhipond to gradually curving stress-strain curves, rind;
w3.11bcTeascs, th~ ,curvatur~. changc5 _more rap~lly nt:. 11!S
kr@. ~~qlues of n m +c ne@~borhood of 10 arc nssocin 1cd. . . -., - .._. . . . .
-With.“$yglinum anoys; whmm , values hll.wcu~ 3 gnd _!j:.
ap”ply to stlainl&s iteels. I{rtgnesium and the Iow-ca;’li(ii; “’
steels have stress-strain curves which correspond to val ucs
of n. of 30 or greater.

The s~udy of strain history of the Ihmges of a coluJnn
which stsirts to bend at ‘the tallgcnt-nloflllllls lend shows
the stime general strain history regardless of the sfmpc of”
the stress-strain curve. .4t the. stnrt of brmling, rmwrsal
of .strc&.begins at i,hc cm tcr d Llwconvex side of tlw columm
k the deflection incmxwcsj Lhc region of. rcvcrwd sprrn@ _
rapiclls over the convex sido of tlw column and is cornpl et c
over the whole convex flange at maximum load. Aft m
the cleftect.ion corresponding to the maximum Ioad is cx-
cecdcd, rcmmal of s~rain sprends into [he commve side of
the cohmin.

I A summary of the load-deflection results that were obtai]~cd
for the X-section column when the strcss+tmin curve nml
the tangent-modulus load were systcmaticsd]y varkd is.
given in figure 6. The. loads arc given k terms of n Id
PI thatproduces an average stress U1in lhc straight column.
Two qes@ts are significant: First, the smaller the vnluc of
n, the higher tlw maximum load is in rclaLiou to the twigm 1-
modul.wi load; second, the smaller tlw vnluc. of n, the ggcal cr
,the deff@icm is at which the masimum load occurs. The
results ohained for the ma.ximurn 10MIme swrmized in two .
forms: In figure 7, the ratio of the difference between Lltc
maximum load and the tangent-modulus lofid to the dif-
ference between the reduced-modulus lord ,@l(i Lllc colunlll
remained straight) and the tangent-modulus load is P1OLLCCJ

,-

/.5”—— -

[

v “’ 1 8
0

1
5 LO L5 20 23”” -

*

FIGURE5.-F&mMrg-Oegmd nondlmenskmal streemtrnln enrros.
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P
P7

J1

m a function of the tangent-modulus load. The maximum
loa(l of columns, critical in the plastic stress range, exceeds
tlw tangent-modulus load by a fairly constant percentage
of the difference between PRW and PT. In figure 8 the
rat io of P=== to P~ is plotted as a function of the tangent-
modulus load. In the plastic range the percentage increases
in maximum load o-rer the critical load are roughly constant
for a given \-alue of n and are larger the smaller the value of n.

ThP dashed parts of the curves in figures 7 and 8 have no
practical significance. Their shape is a consequence of the
fact that the Ramberg-Osgood stress-strain curves have no
proportional limit and are therefore nonlinear in what would
normally be the elastic range. A more correct interpreta-
tion would be to consider the ordinates to be unity in the
dashed regions

CONCLUS1ONS

The theoretical study of column behavior in the plastic
stress range led to the following conclusions:

1. If the behavior of a perfectly straight column ia re-

garded aS t~~e Iimitbz behavior of a bent column as its

-c—-—==_——_ \,

\ ~, ‘1, \
// \\\i \

\
I
I““~.?2

2.

\

5..

Iw...
40.”

P=
q-

FIGCSZ7.—ReWon Ofmaxfmum Icmdto redued-mudtdus lusd snd tangent-modti ILU&

n

./” “
/“

/
/ 5

PT
~

FIGrRE &-ReIatIon of maxlmam Iosd to tangent-modtdus fcad.

initial imperfection vanishes, the tangent-modulus load is
the critical load of the column-that is, tie load at which
bending starts.

2. The maximum load that an initially straight inelastic
column can support is larger than the tangent-modulus
load. The ratio of the rnaxirnum load to the tangent-
modulus load w-iII be Iarger for columns having stress-
strain curves represented by lower values of the exponent n
in the Ramberg-Osgood representation.

LXGLEY AERONAVTLCAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LAiWLEY FIELD, VA., October 16, 1960.



SYMBOLS

ar coefficients in sine series
.4 cross-sectional area
b column thickness
G, G, caj G Conski.its of integration
do initial lateral deflection of spring-supported

column model
d lateral deflection of spring-supported column

model
t? displacement or strain
e] displacement corresponding to force PJ2 or

strain corresponding to stress al
E Young’s modulus
E, tangent modulus (da/de)

ET=g fit, stress corresponding to tmlgenhnodulus load

F force
I moment of inertia
k proportionality factor (x=k.iZ)
k,, k, spring constants
K pararnet er used in Ramberg-Osgood representa-

tion
L measure of lcugth
m positive integer
n positive ~xponent in Ramberg-Osgood repre-

sentation

P
P,
r
u

x
x’

xl, q

Y
Y’
Yl, Y2
P
a

al

Subscripts:

c

( )W
E
max
RM
T
L“’
R

variaMc load on column
load on straight column causing a strain e,
positive integer used in sine series
vertical diaplacement of pivot point of spring-

supported column
variable distance along length of column
nondimensional distance along length of columtl

(x=z’L)’
variable dimensions of length nwtisurcd from

particular points
variable deflection
nondimensional Mlection (y=y’6)
deflections at xl and ZS
radius of gyration
stress
0.7E secant yield stress

midheight of column
particular value when reversal occurred
Euler
maximum
reduced modulus
tangent modulus
left
right

ANALYSIS OF SPRING-SUPPORTED COLUMN

~ro analyses were made of a simple mechanical model
of a column. First, an inflnit.esirnal-deff cct.ion analysis
which showed that, if one assumed a column to be initially
straight, an infinity of equilibrium paths could be found by
which the column can start to deflect,. Each pa tll was
associtited with a definite load. The second analysk was a
flni[ c-deflection anaIysis of the same colunm and showed
that, for real columns (which always contain some small
inititil imperfection), only the lowest of t.hes.c loads, the
tangent-moduhs load, had any real significance.

If such a column is analyzed by the usual approach, the
Euler load is

r.=(k,+kJ :

where the spring system sLiBness kl + kz represents Lhe origi-
nal slope of the force-displacement diagram. Above the
knee of tho force-displacement diagram, the stiffness of
each spring system for increasing displacements is kl, and
for this column the tangent-modulus load is

p, –h)’

The double modulus thx.wy gives for this column a rcducrd
st,mne~~ 2k,(ii, +kJ

2k1+k2
and tbcreforc a reduced-modulus load

2k1(k1+kJ b2= 2P#~
‘Rw= 2k1+k2 ~ PE+PT”

In the. development of the analysis it wilI be
introdllce” t.heae loads.

INFINITESIMAL-L) EFLECTION ANALYSIS —-.—

Figure 1 shows the details of the model of the colmrm.
The vertical leg of length L/2 and two horimnttil lugs caeh
of length h/2 are considered rigkl and rigi~ly joined, The
cohmm is loaded at the top of the vertical leg and is con-”
strained at the inhmection of t.hc two Jogs so that this poiu L
is free h move vertically and rotate but ctinnot mow! lmri-
zontalIy. AL each end of the horizonttd member, there is a
set of supporting springs. In each spring system, the spring _
with stiRuess kl is elastic and its grounded end is rigidly
supported; whereas, the spring with stiffness ka has its
grounded end attached LOa ratchet that slides for a constant
force ~ k, ~ *e spring

z kl+ka
On reduction of the furco

in thk”spring, the ratchet muses LOslide “and unlonding of
292
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the spring occurs with changes in force related to changes in
displacement according to the stillness kz. The action of
these two springs of stifhss kl and ka combine to form a
force-displacement relationship for each system similar to an
idealized stress-strain curve with a sharp knee at the force
PJ2 (see fig. 1).

Let us consider possible changes in the equilibrium position
of the straight MJunm that has been loaded with some force P
~vbich is greater than PI. Static equilibrium of vertical
forces and moments about the pivot point requires the
changes in force in the springs to be related to the applied
load and to any change in the applied load by the following
equations:

AFL+ AFZ=AP
)

(III)

The lateral deflection Ad is assumed to be directed to the
left. The displacements of the sets of springe can be related
by geometry to vertical displacement of the cohunn at the
pivot point. Au and the lateral deflection of the top of the
column M. The displacement of the set of springs on the
left is

anti on the @t.,

In order to complete the analysis of the column, force-
disphwement relations must be introduced for the spring
syekms. The form of these reIations depends on three
possible dispkwement patterns:

(a) e. and e, increasing
(b) e. and e. decreasing
(c) e. increasing and e. decreasing

In the following sections, these three displacement patterns
are discussed and also included in each analysis is the possi-
bility of e~ and e= not changing. -

Left and right displacements increasing,-The first
possible forcedisplacement combination corresponds to the
left and right displacements increasing or remaining un-
changed; that is,

For a load P greater than Pl, these changes in displacement
multiplied by kl give the changes in load es fo~owx

‘F’=(A”+A’3k’
AFn=~Au–Ad ~j k,

}

(B4)

Substitution of equations (B4) in equations” @l) gives the
static equilibrium relations that must exist bet~-een the
change in the column dell ections and the load:

2klAu=AP (Ma)

Ad[PT–(P+@)] =0 (B5b)

where PT=k# as noted previously.

The problem now is to find solutions to equations (B5)
which do not violate the conditions on the displacements
given by the inequfdities (B3). A trivial solution is that Ad
is zero and that. AU increases for a positive AP. Ph3~ically,
this solution would mean that the column remains straight
and continues to compress under increasing load. If, hovi-
ever, in the moment equilibrium equation (B5b), the
bracketed term is zero, it would seem that any Ad is possible
and the cohunn can bend. During the bending process,
however, the load on the cohmnn P+AP must always be
equal to P~ in order to satisfy moment equilibrium: AP must
therefore be zero. If AP is zero, Au is zero, and only zero Ad
can satisfy the inequalities (B3).

Left and right displacements decreasing.-The second
possible force-displacement combination corresponds to tie
left and right disphcements decreasing or remaining un-
changed; ti-at is, -

AeL=Au+Ad ~sO

Aee=Au —Ad ~SO

Then

(B6)

(B7)
‘F’=@u+A’:)(k’+”
‘F’=GU-4’’I+’J1

Static equilibrium requires that

2(k~+kJAu=AP @8a)

&/[Ps-(P+A.q] =0 (B8b)

where Pz=(kl+kJ ~“ If AP is negative, these conditions

are satisfied for any P if M is zero. Physically, this Solution
would mean that the straight column can hmgthan for a
decrease in load. In the moment equilibrium equation
@8b), it would seem that any Ad is possible if the load on
the column P+AP is Pg. If, during the bending process,
t-he load P+AP must always be P-, then AP must be zero.
If AP is zero, there is no Au, and only zero Ad can satisfy the
inequalities (B6).
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Then

Left displacement increasing, right displacement decreas-
ing,-The third forcedisplacement combination corro-
sprmds to the lef L displacement increasing and the right
displacement decreasing or either displacement remaining
unrhanged; that is,

AeL=Au+Ad ~zO 1 (B9)

Ae~=Au–Ad ~50

.
AF.=@u+Ad ;) k~

( 1 (B1o)

A~~= Au.–Ad ~~ (kl+kJ

Static cquililmium requires the following relations between
the load, its change, and the changes in column displace-
tnents :

(2k1+k2)Au–k4d &AP 1 (B1l)
Ad

–k@+(2k, +kz)Ad ;=2 ~ W’+AP)

When the previously mentioned rel%tions for P~, PE, and
P~M are used, the displacements obtained from the static
equilibrium equations (B11 ) are

AP
Au~ “Pi ———

““=2(’-%$;:”” “)

AP
[Bl 2)

These relations between the change in load and the change
in column deflections are valid only if they are consistent
with the original assumptions for the force-displacement
relations of the spring systems. Substitution of these col-
umn deflccttions in the inequalities t-hat define the clirection
of spring displacement yields the inequalities

AP
P.”——..

( )LP.
–~ Zo

1
1 r.

P=M

,:nu( . ).
Pr P <o_— ..—

PP. P.–——

(B13)

Solutions consistent with lateral deflection exist among
the equilibrium equations (B 12) and the inequalities (B13)
when the load on the column lies between PT and Pz. When

the load lies between P~ and PRY, lateral Mlwl,ion is pos-
sible for increases in load; whereas, when the lond lies lm-
tweeu P= and P~, lateral deflection is possiMc only for
decreasing load. If

F“ ‘ -Q>—*.20–Ad –

T“
and if

Pli.ws P 5 P*
-.

then
AP

T--
FJNITZ-LATER.4L-DEFLECTIONANALYSISWITHSMALLINITIALDEFLECTION

The previous ardysia has indicated that an infinity of
equilibrium paths can he found by which a perfmtly straight
column can undergo lateral M cwtion. A more. rcalisLic
approach is to consider an actual cohmm as ono which ud -
mits a small but finite initial imperfection. lt. is of Merest,
therefore, to analyze k load-deflection history of the
spring-supported column when such an inqwrfrctiou exists.

Conaider the same spring-supported column which htis as
an initial imperfection a small cleflection do of tho tip of tlw
column. Static equilibrium requires that.

~L_p,_2p do-+-d—
b J

(B14)

Geometry requires the following rdation Iwtwwm tht spring
displacements and the column deflect ion:

. 2db
e~—eR=

-Z-
(BI5)

The force-diaplamment relations of Lhc spring systems, as
in the previous section, depend on the magnitudr of tlw
displacements and the direct ion in which they arc progressing.
During the initial loading, tbc spring SYStCIIISarc dwtic.
As the load increases, the spring system on the side with tho
more rapidly increasing displacement bwmes” p]asLic” mm]
the column is considered “elastic-plastic..” If the initial
deffection of the cohunn is sufficiently small, the spring
system on the side with the more slowly increasing displarc-
ments can also become plastic as the ~oad increases. The
region in which this occurs is considered” plastic. ” If, after
both sides have become plastic, tho trailing spring clisplacc-
ment reverses, it does so elastically and the column is con-
sidered “plastic with elastic unload ing. ” A summary of
these possible forcedisplacement combinations is given in
figure 3. The column loaddefiection relations in these four
regions are found as follows.
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Elastic range.—In the elastic range the force-displacement
relntions for the springs are

Suljstitution of these relations in the static and geometric

rchtions yields the following solution for the lateral deflection
d tlw column:

P d,

(B17)

w-here lu=b’’~;+~’l-IS the Euler load for this column. The

limit of the clast ic range is reached when the force in the more
rapidIy loading spring syst em equaIs Pi/2. The elast ic region
in th~ plot of column load against lateral deflection is bounded
l~y the coordinate axes and the straight Iine gi~en by

Elastic-plastic range,—In the elastic-plastic range a new
set of force-displacement relations e-sists for the springs.
The relations are

The lateral deflection

F.=k,eL+k2e,j

~
(B 18)

F,=(kl +kJkB

of the spring cohnnn m this range is
{Iefined by the equation

lateral deflection grows in the elastic-phistic range and ap-
proaches infinit~- for values of the load approaching as a
mxximmn value the rec{uced-modulus load PRM. Before this
nmsimurn load is reached! the small spring displacement,
Ivhich has remained elastic, always reverses its directibn of
displacing. For large initial deflections, this reversal occurs
in the elastic range or at the imtant the cohmm enters the
elnst ic-plast ic range. If the initial deflections are small
enough, reversal occurs later. The loci of loads and deflec-
tions at which reversal occurs in the elastic-plastic region lie
on the curve

If

the spring displacement on the right, which htis alwtiys been
the smaller one, can also become plastic. ‘The locus of points
at which this change occurs is given by the straight line

Plastic range.-The phtst ic force-displacement. relat io~c
for the springs are

F~=kle~+kiel

F.= klI?E+k~, 1
(B20)

The lateral deflection in this range is given by the equation

P d,—.
d Prb_. —
b

1–;
r

k the load and lateral deflection increase in the plastic range,
the sprrng displacement on the right reverses and, conse-
quently, changes the spring force-displacement reIation.
ReversaI of the direction of the spring displawment in the
pIastic range takes place on the cume

.();–;;=l–g =0

Plastic range with elastic unloading.-Aft-er re~ersal has
occurred in the plastic range, the force-displacement relations
for the springs are

Tho column lateral deflection is defined in this range by the
equation

(B23)

& the load increases, the lateral deflection increases and
approaches infinity as the column load approaches P=, the
reduced-modulus load.

Numerical example.—The Iat eraldeflect ion anaIysis of
the sprimg-supported column was applied to a particular
column. This cohmn is defined by choosing a ratio of

P. 9—.—
P, 4

and a ratio of
PT_9
K–g

-

Such a column has a ratio of

P~ 4
K–3

The results of the analysis me given in f@re 4 for various
values of initial deflection of the column.



APPENDIX C

ANALYSIS OF IDEALIZED E-SECTION COLUMN

The anrdysia of the simple spring-upported column, given in
appemlix B, has served the purpose of showing the meaning
of the tangent-modulus critical load in inelastic column be-
havior. The model is, hoviever, a crude representation of
an actual column and has only one possible deflected shap~.
The analysis fails to re~eal another phenomenon associated
with a real cohmm, that is, the grovith of the region of the
mlumn over which strain reverwd takes place. A simple
model that can exhibit the growth of reversal along its length
is an idealbed E-sectioE column. Such a column consists
of two flanges of equal mea separated by &web of negligible
thidumss. ATOshear strain can occur in the web so that
ordinary beam theory can be used to relate the curvature of
the lateral deflection of the column to the strains in the
flanges. Furthermore, the state of stress in each flange is
~~sumed to be onedimensional so that in the plastic. range
the stresses can be related to the strains by the ordinary
stress=strain cur~e for the material. If strain re-rersal occurs
in the plastic range, the unloading takes place elastically.

INHNITXIhIALDEFLEC~ON ANALYSIS

An infinitesimaldeflection analysis of an origindy straight
H+ection cohmm reveals the same situation that exists when
such an analysis is made for the spring cohnnn; that, is, a
range of loads exists for which a perfectly straight column
can start to assume a deflected position of equilibrium.

Derivation of the ditTerentiaI equations.--At any section
along the length of the cohnnn, static equilibrium requires
that

AF.+AF,=AP )
(cl)

Geometry requires thaL the curvature be related to the
strains on either side of the cohunn by the equation

d’Ay AeL—AeB
~=— b ‘“

(C2)

In order to complete the analysis, t-he stress-strain rela-
t ions for the flange must be defined. At e-rery section along
the length of the column there are three possible combina-
tions of directions of straining: e= and eE increasing, e~ and
~~ decreasing, and e~ increasing, eR decrea@. Dfierential
equations relating the column deflection to the load are
derived as folIows for these combinations:

296

H the strains ?= and e~ are increasing, the force-strain
reIations for the flange are

AE, ‘
~==Ae=~

Zi.E,
AFz=Ae. ~

d

Substitutim these relations in the

(C3)

?quation of geometry
(C2) and e~ating M’ and AF’g by the use of the static
equdibrium equations (C 1) yields the folIowing di.tlerential
equation in which the term of hig~er order has been neglected:

d2Ay 4P——
dx2 + &~E,@=O (C4)

If the strains e~ and e= are decreasing, the force-strain
relations for the fla~mes are

(G)

Substituting these results in the equation of geometry (C2)
and making use of the static equilibrium equations (Cl)
yields the folIowing differential equation relating the column
deflections to the load: . .

d’Ay 4P
~+~AY=o (C6)

If the strains e~ are increasing and the strains eig are de-
creasing, the force+train relations for the flanges are

(Ci)

The differential equation rdating the increment of column
deflection to the load and its change is

fitial deff ection with increasing load.—If the E-section
cohmm deflects under end load, the sections along its length
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ANALYSIS OF IDEALIZED H-SECTIOX’ COLU31X

The analysis of the simpIe springg+uppmted column, given in
appemlix Bz has served the purpose of show~~ tlw rueaning
of the tangent-moduIus critical load in inekstic column be-
havior. The model is, how-ever, a crude representation of
an actuaI column and has only oae possible deflected shape.
The analysis fails to reveaI another phenomenon associated
with a reaI cohn.n, that is, the growth of the region of the
column orer which strain reversaI takes place. A simple
modeI that cm exhibit the growth of rerersaI along its length
is an ideaIized H-section coIumn. Such a coIumn consists
of two flanges of equal area sepa.ratecl by a web of negligible
thir~e=. ~. shear strak can occur h the web so that

ordinary beam theory can be used to relate the curvature of
tlw lateral deflection of the coIumn to the strains in the
flanges. Furthermore, the state of stress in each flange is
a~sunl~d to be one-dimensional so hit in the plastic range

the stresses can be related to the strains b-y th~ ordinary
stress-strain curve for the materiaL If strain re-rersaI occurs
in the pIastic range, the udoading takes pIace elastically.

tNFIXITESI}IALD E~ECTIOX AJYALWtS

An infmitesimaIdeflertion anaIysis of an origindl~ Shaight

H-section coIunm reveals the same situation that exists \Yhen
such an analysis is made for the spring column; that. is, a.
range of loads exists for which a perfectly straight coIumn
can start. to assume a deflected position of equilibrium.

Derivation of the differential equations.-.it any section
along the Iength of the column, static equilibrium requires
that

~L+~,=/d’ )
(cl)

Geometry requires that the curvature be related to the
strtiins on either side of the column by the equation

d&y= AeL—AeE

did t’

In order to complete the analysis, the stress-strain rela-
tions for the flange must be defined. .4t e-very section along
the length of the cohmm there are three possible combinat-
ions of directions of straining: e~ and e~ increasing, e~ and
<Rdecreasing, and ELkCreaS~, @R decre~~ing. Differential
equations reIating the coIumn deflection to the Ioad are
derived as follows for these combinations:

2’96

H the strains e~ ant{ (E are increasing, the force-strain
reIations for the flange are

Substituting these relations in the equation of geometry
(C2) and eliminating M. and W by the use of the static
equilibrium equations (C 1) yields the following different iaI
equation in which the term of higher order has been neglected:

(C4)

~ the strains e.L and CR are decreasing, the force-strain
relations for the flanges are

Substituting these resuIts in the equation of geometry (C2)
and making use of the static equilibrium equations (C 1)
yields the follow-kg differential equation relating the column
deflections to the load:

K26)

If the strains CLare increasing rtncl the straks e. are de-
creasing, the force-strain relations for the flanges are

((27)

‘Ike differentia~ equation reIating the increment. of co] umn
deflection to the load and its change is

Initial defection with increasing load.—1f the H-section
column deflects under end load, the sections along its Iength
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must be straining according to one of the three possibilities
previously mentioned. If the bending takes place under in-
rrmsing load, it is reasonable to assume that, in the regions
near the ends of the cohmm, both strains are increasing
during bending. At the same time, in a region near the
ct~nter of the column the strains on the left increase TvhiIe
those on the right decrease.

Therefore, &tlerentM equation (C4) may be assumed to ap-
plyat the ends of the column. The adution to this equation is

/Mf,=c, sin\& x, (C9)

where X1is measured from the end of the cohunn and the
cosine term has been dropped in order to satisfy the condition
of zero deflection at the end of the column. .4t the center
of the column, differential equation (C8) appIies and its
solution is

where r: is measured from the center of the column and the
sine term has been dropped because there is no slope at the
center of the ccdumn. Three arbitrary quantities are to be
determined: the constants Cl and Pi and the increase in load .-”
AP. These quantities are determined by the conditions thtit
must exist. at- the junction between the region in which all
strains increase and the region in which the strains on the
convex or right. side of the column reverse. If the region
of increasing strains is of length kL, at the j unct ion

z*=kL

I–zl
#~2=—_

the following conditions must be satisfied:

Substitution of the deflected shapes Ayl and Ayz from equation (C’9) and
homogeneous system of equations in C’l, ~1, and AP:

/
1. —4Pli2L2 P(l –2k)’L7E+.EJ
;s’n~~

—Cos
J 2bf.4EE~

Ayl—Ayz=O

d&yl dAy,=o———
dx, dx~

&’==0 }

equation (C 10), respect iveIy, -yieIds the following

(Cll)

b E,–E.——
2P Et+E

c,

=0 (C12)

.Solut ions e.x-istfor values of the load and regions of reversal (1—2k)L which satisfy the transcendental equation

t~n~w-tan ~lp(’-t~)~~”’)=~~ (C13)
.

The principal roots of this equation yield vaIues of Ioad Iying between the tangent-modulus load and the reduced-moduhs
load with corresponding regions of reversal on the Convex side mnging from an finit=~al length at the center Of the .
column to the entire side of the column. The shape of the deflected column is a haIf sine wave at these two limi&g
loads. The rate of change of the load in the column to the change in deflection at the center of the column is, at the
tangent-modulus load,

AP 2PT
~=T

and, at the reduced-moduhs load,

AP_o
Ay=
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Initial deff ection with decreasing load, —By a process
sinliIfir to the. ono used for initial &flcction Tit]l inc~eag~g

load, cqui]ibrium paths can be found by which n straight
plastic column cm dcdlwtt under decreasing load. Assume
t.hu~, for a region near the. ends of tl.m column, the st.raks orI
both sides are dccrcasing; then, differential equation (C13)
nppliw. in this region. Tlm solution to this differential
equation t,htik satisfies tho condition of zero deflection at the
(Ind of t.ho column is

d“4P–
Ay1=C8 sin —-

b’AE “
(C14)

In the region at the cent,er of the column, the strains on the

k]. is now the length of the region of decreasing strains and

These three conditions kad to the

Jsin 4Pk2Lz.—
b2A.j~

d
..-——
4Pk2L~-—. .

Cos b2~ ~

convex side are assumed [o hreaw and those on th cvncaw
side, to increase; t.hcrefore, cliffwcntial equnt ion (C%,)npplies
in this region. The solutiou for the d(dlcwtc~l shtipc i]~ tl]is
rurion is

2P(-E+E’)
. ,.

Ayz=C4 COS
d

—.—. — ‘~ ~’-–= (cl 5)‘2+9P b ~+~1b’AEE, .

A relation Iwttveetl the arl)itru[? qunnti[ irs da, (74, nnd AP
is found from tho three conditions that. mist at. the junc~ion
of the iegion in +rhich all shwins arc dccrcnsing and t lIV
region m which only tlIv strains on the conwx side nrr

I–2k
decreasing. M the junction, rl=kL nml r2=— -–2— L wlwm

the tlwee conditions tha L nlllst lx satisfied arc

Ayl —Ay2=tl
1

dAyI dAy2= ~—._
fix, dx,

t

d
—-—-

~ sin 4Pk’L2
bSAE

if?’=o J

following homogeneous system of equations in ~,, (j, cmd AP:

4P(1 –2kj2L’(E+ E,] “’ b E, –“E
—Cos 2bZAEE, - ‘~ E+E,

-lwww:t?w’” ““-o

c,

c,

Ap

(C16)

=0 (C17)

CYmsistent solutions exist among the quantities C’a, C~, nnc] AP, which HISOsatisfy the assumwl directions of strnin-
ing if the load and tJLcregions of rewmm.1 satisfy the equation

4

—
tau 4Pk2L2

d ~
P(l –2k)’.E’(E+ E,)= - “E+ ‘,

-. . ..-

7ZLE- ‘an 2 bzAEE( 2 E,
(cIs)

and if AP is negative.
Solutions of thse equations exist for loacls lying Letwccu the reduced-modulus Ioad and tllLIEuler load. At thcw LIVO

limiting loads, the deffcctcd shapes arc sinusoidtd. .4t the reduced-modulus load, strain rcwmal orcws over the whole
convex side of the column; whereas, at the EuIer Ioacl, it is complete over both the conwx and cm-wave sides. At the
rcdnced-modulus load

AI’
–o—.—

AyC

and at the Euler load

A&_ 2P.
Aye b

Initial load-deflection relations at tangent-modulus load and Euler load for arbitrary cross seotion,-~ gemmd rasuIt
which can be induced from the study of the spring-supported column and the H-section column is the initial slope of the
load-deflection curve for any constant-section column at the tangenhnodulus load, at the reduced-modulus load, and at

--.-
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tlw Euler Ioad. At the tangeut-moduius lon.ci, tiw strain at
tl~~~center of the convex side of the column is stationary;
tkwfore. the instrmttineous center of rotation for strains in
tl~~ cross section is at this point. The distribution of st.rtiin
across tile column is uniform with n maximum -due at the
rrmvave side. lf the strain on the concave side k @?Lj,, the

inmmse in load would be as follows for a spnmetrical cross
swtion:

(~eL)c~Er
AP= -q—

\vhere A is the mea of the cross section.
strain &?L is related to the curvature of
wluation (c~) and is, at the center,

(C19)

The change in
the column by

Elimination of (&’L)~ between equations (C19j and (C20)
yields

or

AP b
-- P.

Mj.=2p~

.it the reduced-modulus load, the slope is zero. .+t the
Euler load, the instantaneous center for strains on the cross
section is at thr center of the column on the concave side;
therefore, by a process similar to that employed at the
tungent-moduius load, this sIope can be shown to be

LP b-—..= ——
Aye 2p~

Pz

FINITE-DEFLECTION ANALYSIS

-In exact finite-deflection analysk in the plastic range is
voIuplicat ed by two factors. First, the deflections may
become large enough that the more exact. defiition of c-urv-
tit ure of the cohnnn is required. In the anal~-sis which is
dweloped here, the usual smalldeflection definition for
(,urvature is used and is justified by the results that show the
most significant actions to take place for real columns at
small displacements. Second, as Iaterrd deflectiori proceeds,
the strains on the convex side reverse their direction of
straining and elastic udoading of the column elements takes
place. This second phenomenon, referred to as the growth
{}f the reversed region, was not so well understood and
required some investigation. In order to in~estigate the
effect of the growth of re~ersalj a tite-deflection analysis
was made for an ideaiized H-section column made of material
haying a constant tangent modulus in the plastic range.

bother analysis was made in which u more realistic stress-
strain relation for the material was used to study the effect’ n
of the shapt’ of the stress-strain relntion on the strength of
Cohlmns.

Analysis of H-section colunm for constant tangent modu-
lus,—The previous analysis of the spring cohunn has shown
that. a perfectly straight column may be assumed to start
deflecting at the tangent-modulus loBd. The static relation-
ship between the loads in flanges of the H-section and the
applied load are given by the following equations:

The geometric rektion between the strains in the flmges and
the column deflect ion is

d’y eL–eB—.——
dz2 b

(C22)

Furthermore, in some part of the cohunn, the strains are
assumed to continue to increase; then, for constant tangent.
modulus above Pr,

(C23)

where er is the uniform strain that exists everywhere in the
column at the tangent-modulus load. The differential equa-
tion which relates the deflection to the applied load is
obtained by substitution of the st~tic and load strain rela-
tions into the geometric relation and is as follows:

(C24)

If at some section of the column the strains on the convex
(right) side start to decrease, theu

AE
Fn=(FjJa—— ~ [(~IJrcr— eitl

where the subscript rer refers to the load and strain at which
reversal of strain has taken place. The differential equation
relating load to deflection along this part. of the length can
now be written as follows:

-..-—

-.
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These equations may bc put in nondimensional fornl by
introducing tho following notations:

()d’y’ ~ =2 g y’=(1
d(x’)’

,.

(C27)

tind in the reversed region

The difficulty involved in determining e-mctly the deflections
arises from the fact that the growth of the reversed region is
not known initially but, must be determined as deflection
proceeds. An approximrd e solution can be made which is
based on the method of collocation and can be extended to
my required degree of accuracy. The solut.iou is dwwlopcd
by assuming that the deflections of the cohmm can be
expressed as the finite trigonometric series of odd sine terms

Y’=:lar sin (2P——l)TZ’ (C29)

Such a series satisfies the boundary conditions aud is sym-
metrimd with respect. to the center of the. column. The
coefficients of the series are obtained from the set of simul-
taneous algebraic. equations obtained by substitution of the
series into the differential equations (c27) and (C28) and
satisfying them at m equidistant stations in the ha] f-lengt,h
of thu colnrnn, Of the. two differential equations, the one
that applies at a given station depends on the direction of
straining. It is therefore necessary to keep a c.hcc.k on the
direction of straining at each station and to use the applicable
equation when the direction of straining changes. The
analysis can be stwted because the infinitesimaldeff ection
analysis has shown that, at tho start of bending at the tangent-
modulus load, only the strains at the center of the column
have reversed. As the load increases, the reversed region
spreads from the center of the column toward the ends.

The simplest approximate solution is obtained by the use
of a single sine term which satisfies only the conditions at
the center of the column. If

y’=y; sin d

substituting this deflection shape in the differential equation
(C28) and realizing that reversal occurs immediately at the
center yields the following approximate solution for the
deflection of the center of the column:

,,=(+)(!-3
4(’-+) ““““””””‘c30)

The deflection of the center line of the colmnn tis P cxcccds
P= is given in figure 9. Also shown arc the results obtninrd

by again assuming ET=; E with two, three, and five sine,.

terms for the ddhwt.ed shape of the colunm find by satisfying
the equilibrium and stress-strain relations at the correspoml-
ing niuid-wr of equidistant points in the half-hmgdl of the
I?olumn. AU these solutions indicate that the mtiximum
load on the column will approarh t.hc reduced-modulus
load for large deflection because of the assumed linearity of
the stress-strain curves. The solutions further indicatp that.
re]ativdy few terms in t.hu series are required for an accurntc
solution of the load-deflection history of the column.

Analysis of H-section column with a nonlinear stress-
strain curve .—TIM finit c-deflection analyses of both th
spring~upported column and the H-sccticm column have in-
dicated that, for a constant tangent modulus in the pltistic.
range, t.ho maximum load for a column approaches the
reduced-molulus value at a largc deflection. In orclcr to ~ntilic
a study of the effcct of a continually d ccreasing tangent
modulus on t.bo strength of an H-seetiou column, ct finite-
deffection study was made by using a more rerdistic st rcas-
strain cur-m. The Rand.mrg-Osgood mprescntation of the
stress-strain curve (reference 7) was choscu for tho ,51udy
because it fits closely a wide class of materials used in air-
craft construction. The Rambmg-Osgood reprcaentution of
the relation of stress and strain stat~ that the strain is

(C31)

where E, h-, and n are chosen so that a suitable fit is obt.ainw]

Number of tsrr?as
in Sine serhs

—.— :
------

:

-1 I I ! 1 , t

0 J .2 .3
v=
z-

... . .

FIGUREk-haddeflectlon curves for idealized E-sMon column with mustant tangmt
modulus In the pleatkranga.
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to the stress-stmin cur-re. A recommended procedure for
cletmnining the three paramete~ is su=~ested by Rambwg
M( I Osgood. The quint ity E should be tlw init id elastic
rnoduhs, and if

~=; ($)’-’

tlwll UI is the stress at the intercept of the stress-stmin
curve and a line through the origin with a slope 0.7 of the
rkstic modulus. The stress ml is approximately the yield
strews defined by the ().z-pement offset. llle quantity n is n
m~asure of the shurpness of curvature of the stress-strain
curve at the yield stress. Smoothly varying stress-strain
vurves that are tj-pical of stainles~ steel have wdues of n
between 3 and 5. TLc values of n for the ~~um al]o~~
are about 10. Very large -dues of n are associated with
the maPqwsium alloys and the mild steek,.

Tl]e static and geometric relations are the same as those
lwd in the analysis of the H-section with constant ta~ent
modulus. Because of the form of the Ramberg-Osgood
stress-at rain relfit ionship, strain in terms of force is more con-
vwli~nt. If tht} strains are increasi~w. then

fvhere p, is the load on a straight column for which the
average stress is Ul, the yield stress. Substituting these
strain-force relations into the geometric and stat ic relations
timl making use of the following relations

yields the following differential equation:

The strain-force relatiom when re-iersal htis taken place are

These relations give the following difTerentiaI equation for
the reversed region:

After the ma.xirnum load in the column is reached, there are
sections of the cohmm for which the strains on both sides of
the column are decreasing. The strain-force relations in - .--.=
this refjon are

The differential equation which is applicalJe in this region is

Cl’y’
d(x’)’+ (9+w%’T-

[%m=o (C37)

The solution of the system of dflerential equations was. _
carried out by the same procedure used in the tmaI@s of
the H-section with a constant tangent modulus. A solution

~-wasassumed in the form of a finite series of odd sine terms.
Substitution of the series into the appropriate diflerential
equations and satisfying them exactly at an equidistant
number of stations alo~~ the length of the column fiekls a
system of algebraic equations. The system of equations is
nonlinear because tie moduli are a
placements.

The simplest. appro.timate solution
tut ing

Y’=Y: sin ~x’

junction o~ the dis-

k obtained by su-bsti-

in the differential equation (C35) and satisfying the equation
at the center of the column. The nondimensional relation”
between the center-line diaplacement and the applied load
is then obtained from the equation

(C38)

in which use is made of the fact thfit reversaI occurs at the
center of the right side of the cohunn at tbe tangent-modulus
load. Solutions of equation (CUM) for various values of n
and for various ratios of the ta.ngent-rno&dus load to the
yield~tress load PI are given in figure 6. The same non-
dimensional results are obtained in the undysis of the spring-
supported column.

In circler to study the error clue to fixing the shape as a
single sine curve, solutions were made with threw sine curves.
These solutions were made for n=2 and 10 and for a ratio
of tamgent-moduk load to yield+ tress load of unity. F~e
10 shows a comparison of the results of these calculations
with those obtained for a single sine curve. The comparison
indicates a slight reduction in the maximum Ioad and an
increase in the deflection at which ma.timum load occurs.

The amount of the dillerence between the tangent-modulus
Ioa.d and the reduced-mod&s load which the H-section
column could actually suppmt were obtained from the anal-
ysis summarized in figure 6 and are given in nondimensional

—
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form in figure 7 for various values of n.. k+ n inmwws,
[CSSof the difference is dewlopcd for columns critical in ttlo
plastic ~ange.

The relation of t.hc maximum load to the hmgcnt-modulus
load is s~pmlarizecj in figure S for wwicms values of JI and for
columns which “WCeriticul at various stress ICWIS.

In figures 7 and 8, tk dashwl pints of t.h~ curve were I]OL
calculat~d and arc cstimti tw of i~ha t Nwuht IN obtuincd fro~n
the analysis using the RtmdwIg4sgood form of the strws-
strain relation. Tlwse dashed pnrts of t.hc curve me lrivinl
and misleading and are mused by tlw fact t.hut the w]tily~ical
form of” tJe stress-strain curve has no truly linww clnsl ic
region. “In the elastic rcgirm, no diffcrcncc should cxisL lw-
twcen the ma.timum load, the tuugrnt-tilodulus load, and Lhe

I reduc.edzqodulus load (large defle~ticm effects exclu~cd).
.
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